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ABSTRACT 

This report motivates and describes an approach to modeling 
bioburdens that has many of the properties generally recognized as 
desirable for  such models. A probability distribution for  the bio- 
burden on a surface, at any time t, is derived in closed form. This 
distribution depends upon the way in which organisms a r e  "clumped" 
and the deposition rate and removal percent of these clumps. 

Examples a re  given of how this model may be used to estimate 

An indication is also given of how the model 
and predict bioburdens and specify confidence limits about these esti- 
mates and predictions. 
may be used to establish sampling protocols. 

.l, 1. 
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A STOCHAST CH TO BIOBURDEN 
ATlON AND PR -A P R E ~ ~ ~ ~ N A ~ ~  REP0 

I. I ntroduction 

In almost any environmental situation viable microorganisms can be found on 

surfaces. These microbes a r e  placed on surfaces by fallout from the surrounding 

atmosphere, contact from humans, o r  contact with other surfaces. Recently con- 

cern has risen over this fact, due to NASA's commitment to a Planetary Quarantine 

Program. ?art of this commitment is L-eflected in the requirement of a high proba- 

bility that any piece of planetary space hardware due to land on certain planets 

should have a low probability of contaminating the planet with microorganisms. 

This commitment currently implies that the hardware must have a high probability 

of being sterile. In order to establish a sterilization procedure, it is necessary to 

Thus, know the initial bioburden on the hardware at the start of sterilization. 

several studies have been made to determine the numbers and kinds of microorgan- 

isms which a re  on surfaces in various environments. 5' 6s 7' Most of these studies 

a r e  based on microbiological assays of surfaces. 

an entire spacecraft, sampling techniques must be employed. These techniques 

utilize direct assays of small portions of the surface of the spacecraft and a charac- 

terization of the environment around the spacecraft. 

matical model which yields a probability distribution for the bioburden. 

model has become known as an estimation o r  direct assay microbial model. 

1 

2 ,334  

Since it is not feasible to assay 

This fact necessitates a mathe- 

Such a 

Actual samples, in most cases, also cannot be taken on all surfaces completely 

up t o  the actual start  of sterilization. It is then necessary to extrapolate forward in 

time from previous estimates (based on surface assay data) using environmental 

data. A model which has this ability is known as a prediction model. 
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The specific type of model which is needed is dictated by how such a model 

must be used. 

by NASA policy. 

for a Martian lander. 

This in turn is dictated by the responsibilities imposed upon the user 

Let us for a moment consider the Planetary Quarantine Provisions 
9 

The first place where a model should be capable of assisting in meeting the 

Planetary Quarantine Provision requirements is in the various planning documents. 

The contractor is required t o  submit a microbiological assay and monitoring plan. 

Among other things, this document is required to describe the number of samples to 

be taken, the location from which these specimens a re  taken, and the time schedules 

for the sampling. In order to  assist  in this, the bioburden estimation and prediction 

models must possess a form which lend themselves readily t o  the planning of sam- 

pling protocoland hypothesis testing. This w i l l  enable the contractor t o  plan the sam- 

pling s o  that enough samples a re  taken from the necessary areas at the right times 

to obtain a confident estimate of the bioburden. 

taking more samples than a re  necessary. A s  a constraint on his plans, the NASA 

Project Office will  ca r ry  on an independent sampling program. 

samples is taken to verify the numbers provided by the contractor. 

must allow fo r  this in his planning. Since the project office is only attempting to 

monitor the sampling done by the contractor, they should require fewer samples, 

This would again imply that the models that a r e  developed should be capable of being 

used in this type of hypothesis testing. 

This wi l l  also prevent him from 

This second set of 

The contractor 

The contractor must also provide a Decontamination Plan. This plan may 

contain the justification and an analysis of the need for  decontaminating various 

pieces of hardware. Bioburden models should be ones which could be used to deter- 

mine this need and to determine the optimal time for  decontamination and amount of 

decontamination required at these times. 

Other planetary quarantine provisions for Martian landers which impose proper- 

ties on bioburden models a re  related to the accuracy of choosing the parameters in 

the models. The parameters must be capable of being demonstrated as valid. 

The contractor must also verify that the levels of numbers of microorganisms 

This, on the spacecraft a re  within specified limits at the beginning of sterilization. 
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together with the certification of the level of sterility required from the Planetary 

Quarantine Officer prior to launch, implies that the bioburden models used be of a 

form so  that some level of confidence can be attached to their predictions and esti- 

mates. 

In addition t o  the above document, there is another recent publication which 

This document is the should be kept in mind while developing a bioburden model. 

review of the JPL-Martin report by the Planetary Quarantine Advisory Committee. 

A summary of some of their more important suggestions a re  as  follows: 

10 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

The committee recommended that "direct assay techniques and 
a model capable of integrating direct assay measurements into 
a bioload estimate be developed for  the design of sterilization 
processes, and a prediction model, validated and verified on a 
continuing basis by direct assay methods, be used to comple- 
ment direct assay estimation where the latter is not applicable 
because of constraints on accessibility in terms of spacecraft 
locations or in time. '' 
The models should serve as  management tools in pointing out 
activities and ranking them by priorities with a view to con- 
trolling the microbial contamination on the spacecraft before 
assembly. They should also be capable of being used during 
the actual assembly process to facilitate decisions concerning 
control measures which might be necessary to keep the bioload 
within specified limits at sterilization time. 

The model should take into account the clumping of microorga- 
nisms and allowance should be made for the size distribution 
of these clumps. 

The model should be capable of being verified by setting up an 
experimental situation in which all the parameters in the model 
a r e  measured (or controlled). 

There should be a sensitivity analysis performed on the model. 

The parameters should be determined on the basis of "well- 
defined" procedures and some information be provided regard- 
ing the "goodness" of the parameter values. 

If the direct assay and the predicted value a re  inconsistent, 
there should be some strategy for deciding what to  do. 

The assay model and the prediction model should be "viewed 
as a single entity. '' 

7 



The purpose of this document is to develop a bioburden estimation and pre- 

diction model which is capable of meeting these objectives. 

1.  Discussion of the Physical Problem 

While the problem of predicting and estimating bioburdens on surfaces can be 

viewed as an extremely complex one, there a r e  a few basic principles that a re  read- 

ily observed. 

The first principle is reflected by the fact that several investigators have ob- 

served that if  a surface is left in an environment for a reasonable period of time an 

equilibrium is reached in the bioburden on this surface. 11’ l2 This phenomena has 

become known as the “plateau” effect. 

surfaces, one would expect the bioburden to increase steadily in a given environ- 

ment. Since this does not happen, and a plateau is observed, there must be some 

loss of viable organisms from the surface. This is undoubtedly explained in part by 

the death of organisms on the surface, but since the plateau has been observed when 

only bacterial spores a re  present one suspects that there a re  removal mechanisms 

other than death. 

off, contact removal, and so  forth. This discussion leads naturally to the first 

basic principle associated with bioburden estimation and prediction, namely, that 

viable particles a r e  removed from surfaces. Any model should take into account 

both modes of removal of microorganisms from surfaces--removal through a loss 

ofviability o r  through physical removal. 

factors. Among these a r e  

If there were no loss of organisms from 

These mechanisms a r e  termed physical removal and include blow- 

Both of these modes depend upon many 
13, 14, 15, 16 

1. Surface characteristics such as material, angle, roughness, 
contaminants, conductivity, etc e 

2. Environmental gas properties such as composition, tempera- 
ture, humidity, particle size, etc. 

3. External force fields. 

In spite of these many factors and our lack of understanding of them, we wi l l  

be able to make a statement regarding the result of the combined effects of all of 
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them. Before we can discuss it, however, we need to consider the second principle 

involved in predicting and estimating bioburdens. 

In the Introduction we referred to the fact that microorganisms in environments 

and on surfaces tend to occur in clumps. 

our analysis. There is both direct and indirect evidence to support this observation. 

The indirect evidence is supplied by the fact that there is physical removal of micro- 

organisms from surfaces. 

particles or organisms) a r e  extremely difficult to remove physically due to  their 

very small size. When attached to larger particles their removal is much more 

easily effected, but larger particles such as skin flakes, lint, and dust particles a r e  

likely to have upon them more than one organism. 

dence. 

nisms in such an organism-bearing clump is a small number between 1 and 10 de- 

pending upon the environment. 

mean number of organisms per clumps of about 4 to 10 in three environments. 

More sophisticated experimentation is now being done by the same group. 

experimentation at  Sandia indicates a mean number between 1 and 2 in research 

areas. 

This is the second important principle in 

So-called "naked " organisms (those unattached to other 

This gives us our indirect evi- 

Direct experimental evidence indicates that the expected number of orga- 

Unpublished Public Health Service data indicate a 
17 

Similar 

Because of these observations, clumps of organisms (whether attached to an 

ambient particle or not) may be thought of as particles. 

particles. 

They wi l l  be termed viable 

Let us return again for a moment to the removal of microorganisms from sur- 

faces. If we assume that microorganisms are  removed as viable particles, then the 

number removed should be directly proportional to the number of viable particles on 

the surface. 

moval. It wi l l  depend on all of the factors we have discussed. 

The proportionally constant, p(t), is the result of both modes of re- 

Even though this dependence is not well understood, it would currently appear 

that the proper level at which to describe removal of viable particles from surfaces 

is using only the notion of a removal fraction of the number on the surface as a func- 

tion of time and incorporate into this concept 

the approach taken in this document. 

forms of removal. This is precisely 
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Our last basic principle relating to bioburden modeling is that viable particles 

This again can be from two basic sources, the environ- a re  deposited on a surface. 

ment and contact. 

depends upon many factors, Among these are: 

The number deposited on a surface in either of these modes again 

1. Collection efficiency of surface 

2. Concentration of viable particles in surrounding environment 

3. Areas of contacts 

4. Types of contacts 

5. External force fields, 

Furthermore, as with removal, the effects of these many factors a r e  not well under- 

stood. In the case of deposition, the basic observation that may be made is that, in- 

dependent of the mode of deposition and all of the factors listed above, there is some 

rate, h(t), at which viable particles are deposited on a surface, This rate w i l l  obvi- 

ously change as a function of time, and, itself depend (in an unknown way) upon the 

above factors. Nevertheless, a deposition rate, representing deposition from all 

sources, does exist. 

deposition rate on the many factors which must affect it, the best level at which to 

describe deposition of viable particles currently appears to be through the use of a 

function, A(t), incorporating deposition from all sources. 

taken in this document. 

Because of the lack of understanding of the dependence of the 

Again this is the approach 

In summary, Figure 1 describes the problem pictorially. 

that organisms occur in clumps that become deposited on the surface from the en- 

vironment or  through contact at a rate h(t)  particles per unit time at time t and are  

being removed, through death o r  physically, at some rate ,u(t)N(t) per unit time at 

time t. 

t. 

Here it is shown 

The function N ( t )  represents the number of viable particles present at time 

Here the proportionality factor, ,u(t), is the removal fraction. 

10 



Figure 1. The Physical Problem 

I I I .  The Approach to Modeling 

In the previous section we attempted to show that there are  three basic entities 

that determine the number of organisms on a surface at a given time. First, orga- 

nisms should be viewed as occurring in clumps, termed viable particles. 

the number of organisms per clump is one of these basic entities. 

deposition of these clumps (from - all sources) onto the surface and the rate of their 

remove1 (in %way) a r e  the other two. Intuitively, knowledge of these three enti- 

ties over a long period of time should be sufficient to allow one to estimate or  pre- 

dict the bioburden on a surface at any given time. The primzry purpose, then, of 

a bioburden model is to describe the relationships which exist between these three 

Roughly, 

Then the rate of 
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basic entities and the bioburden on the surface. 

related primarily to sampling which should become evident later in this document. 

There a re  secondary purposes 

The form the model takes is dictated by two conditions. The f i rs t  is the 

problem itself. 

random process. 

in nature. 

The deposition and removal of microorganisms on surfaces is a 

Thus the model should be stochastic rather than deterministic 

The second condition is dictated by the requirements outlined in the Introduc- 

In order to meet the requirements, a bioburden model should first  be capable tion. 

of yielding estimates and predictions of the expected or mean number of organisms 

on a surface for various times t. It is possible, however, that the probability that 

the true bioburden exceeds this predicted mean may be large. 

that a person needs more information than just the mean. 

burden model was brought about by the sterilization requirements for spacecraft, 

the type of additional information required should be dictated by these goals. 

establishing sterilization cycles one of two approaches can be taken. 

This implies then 

Since the need for a bio- 

In 

The first requires only an estimate of the actual bioburden. Since w e  desire 

to have a very low probability that the spacecraft is not sterile at the end of the 

sterilization cycle, we should have a low probability that the actual burden exceeds 

the value we use fo r  the initial population assumed for sterilization. We would like 

to determine the probability that the actual bioburden exceeds any given value. 

if the probability that the actual burden exceeds, say ten times the mean of our dis- 

tribution, is very low, one may sterilize for a burden of ten times the mean knowing 

Then 

it is very unlikely that he is incorrect. 

sterilization cycle could give incorrect assessments of the degree of sterility a 

large portion of the time! In order to obtain information describing the probability 

of having a bioburden greater than various multiples of the mean, it is necessary to 

know the probabilities of having various numbers of organisms on the surface at any 

given time in closed form. 

Using just the estimated mean value for the 

The second method of determining sterilization cycles, proposed by Fredrick- 

son, l8 actually uses this probability distribution a s  its input information regarding 

the initial sterilization population--but, in any event, it too requires knowledge of 

the whole probability distribution of the bioburden. 

12 



If we therefore let 

P.(t) = the probability that there a re  j organisms on 
the surface of concern at time t 

a bioburden model should, because of the above reasoning, be capable of represent- 

ing these quantities a s  functions of our three basic entities. 

In this document we wi l l  derive such a model. There a re  two approaches to 

the derivation which lead to the same model. 

derive the estimation and prediction models in Sections IV and V. The mathemati- 

cal approach to the derivation, which is based on first principles, is given in Appen- 

dices A, B, and C. The basic expressions that form the model a re  

The heuristic approach is used to 

where 

M(t) is the expected number of organisms on the surface at 
time t, 

Y is the expected number of organisms per viable particle, 

Q(j, k) is the probability that k viable particles contain exactly 
j organisms. 

The latter two of these can be derived from a knowledge of the manner in 

which organisms a r e  clumped. 

cles become important since M(t) satisfies the differential equation 

The deposition rate and removal fraction of parti- 

which can be solved in closed form for M(t) a s  a function of Y, h(t) and p(t). 

function may then be substituted into Equation (1) above yielding the probabilities 

P.(t) a s  functions of Y, Q(j, k), h(t) and p(t) only--as desired. 

This 

J 
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V. Estimation Model 

Since a spacecraft is a large, complex piece of equipment, it is not surprising 

that different subsections of the spacecraft have different sterilization properties. 

This is due in part to such things as different heat conduction properties of materi- 

als, the mating of surfaces, shielding from radiation, and different decontamina- 

tion properties. 

if i ts  entire area has the same sterilization properties. 

partitioning of the surface we wi l l  also wish to take into account degrees of variation 

in the bioburden from one section to another. 

bial zones we w i l l  want to require that the entire area of each zone or subsurface 

sees the same microbial environment and has the same microbial characteristics. 

By the terms microbial environment and microbial characteristics we mean all of 

the characteristics of the surrounding environment and of the surface itself which 

effect the bioburden on the surface of the zone. 

Let us  call a subsection of a spacecraft's surface a microbial zone 

In doing this conceptual 

This means that in defining our micro- 

With this in mind, let us  consider the problem of estimating the number of 

microorganisms on a microbial zone of a spacecraft's surface at some fixed time. 

One of the ways to approach this is to take some number of samples of (Y square 

inches each from this zone. Let us assume that we 

do this and process the samples according to the NASA Standard Procedures for the 

Microbiological Examination of Space Hardware. l9 Let us  assume that the k 

ple contains x microorganisms. Calculating the sample mean we get 

Call this number of samples n. 

th sam- 

k 

n 
- 1  

k "  Y = ;  X 

k= 1 

The question now arises: What a re  we estimating? We know that there is always 

some sampling error.  Let u s  assume that there is a uniform sampling and assay 

efficiency of E .  Then if our  microbial zone contains A square inches, we see that 

is an approximation to the mean of the distribution of the number of microorga- 

nisms in the zone. The reason we must consider a distribution for the numbers 

14 



of microorganisms in a zone rather than the actual number is because of the vari- 

ability in the samples. 

nisms get onto surfaces o r  a r e  removed from surfaces a r e  random phenomena. 

This ar ises  because the processes by which microorga- 

Given x, defined by Equation (21, as an approximation to the mean, we now 

ask: What is the distribution which describes the number of microorganisms in 

the zone ? Many people have assumed that the microorganisms are  spread over 

the surface in some uniform manner and thus 7 is an estimate of some representa- 

tive a square inches. 2o  This leads to a Poisson distribution for the number of 

microorganisms on the surface. 

around ambient particles, this distribution does not hold. 

tributed in some uniform manner, but the fact that when we find one microorganism 

we increase our probability of finding a second keeps the Poisson distribution from 

describing the number of microorganisms. This is the same thing which we would 

have if  we were sampling to find the number of head of cattle in a section of the 

country since cattle exist in herds. 

we have a higher than normal probability of finding a second head. 

though the herds may in some sense be uniformly distributed, we cannot count the 

head of cattle and simply extrapolate. 

any cattle in it. 

be greater than that of a Poisson distribution 

cussion of this). 

tances from the mean. 

If we assume that microorganisms a re  clumped 

The clumps may be dis- 

If we sample a certain area and find one head 

Thus, even 

One field we choose to count might not have 

Thus, our variance (or spread) of our "clumped" distribution must 

(see Appendix B for a rigorous dis- 2 1  

This has a direct effect on the probability of being various d is -  

Let us assume we know the distribution for %lumpingt1 and let be the mean 

number of microorganisms per clump. 

clumps in the zone, then HY is the mean number of microorganisms in the zone. 

Thus, using Equation (2 ), we have that, approximately, 

Then we know if H is the mean number of 

- 
x = H Y  

Since the clumps a r e  assumed to be distributed in some uniform manner, we know 

that22 the probability of having k clumps in the zone is given by 

k -H 
, k =  0, 1, 2, .... Prob { k clumps in the zone 1 = - H e  

k! 
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- 
Let us suppose that our estimate of the mean, x = I. 

1 microorganisms in the zone we do not know the number of clumps. 

organisms may ar ise  from 1, 2, 3, or  5000 clumps. Therefore, we have 

If we know only that there a re  

The I micro- 

Prob { I microorganisms in zone 1 = PI = 

m 

Prob { k clumps in zone 1 Prob { k clumps have I (5 1 
k= 1 microorganisms 1 

For  notational convenience, define (see Appendix B) 

&e, k) = Prob { k clumps have I microorganisms . 
Combining Equations (4), (5), and (5) we have 

m k -H 
Q(Q,k) - H e  

I k! P =  

k= 0 

This distribution can be arrived at rigorously from first  principles. 

for  further details. 

See Appendix A 

Analyzing this distribution, we see that indeed the mean number of organisms, 

M, satisfies 

M = H Y  

and, in addition, that the variance of the distribution, V, is given by 

V = H (v t Y ") (9) 

where v is the variance of the distribution of the number of microorganims per 

clump. 

then 

(This is done in Appendix B. ) It is also worth noting that if  v # 0 and Y # 0, 
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whereas in a Poisson distribution, these a r e  equal. 

Since we approximate the mean number of organisms, M, by our sampling 

mean g, it is worthwhile to rewrite Equation (7) as  

00 k -MIY 
QU,k) . (M/Y) e P =  Q k! k=O 

(10) 

Equation (10) is therefore our estimation model in the form previously discussed 

in Equation (1). 

In addition to estimating bioburdens, one of the main applications of this 

estimation model is as a management tool in establishing sampling protocol. 

us consider in the remainder of this section an example of this use. 

Let 

We have already seen that changes in the distribution which describes the 

"clumping11 of the microorganisms wi l l  result in changes in the variance of our 

distribution of microorganisms on surfaces even if the mean is kept constant. 

should be reflected in our sampling procedure. 

which this can cause by doing a parametric analysis on the mean and the variance 

of the If clumping distribution. 

This 

Let us consider the types of changes 

Using the type analysis used in Reference 23, we see that if  we wish to re- 

quire that 

then we must know 

2 PMn x <-- v 

17 



where n = number of samples, and where the parameter X is defined by the equation 

+(X) - c $ ( - X )  = 13 where + is the standard normal distribution. 

a re  tabulated. 

Tables of values of X 

Using Equation (9)  we then know that 

We determine P by the requirement that 1 x-M 1 < e This would imply that 

where Mmax is the maximum mean number of organisms deemed possible. 

For our example, let us assume we a r e  considering the case where 

E =  1 

e = 0.90 

3 
T =  10 

7 
= 10 . max M 

Table I then gives the number of square inches n a  which must be sampled for vari- 

ous values of v and Y to obtain the accuracy specified by 77 and 8 .  

factors a r e  important in establishing the sampling protocol. 

v = 0 would be the Poisson case. 

protocols wi l l  be explored in more detail, including how one tests hypotheses regard- 

ing the correctness of mean estimates for  use in monitoring o r  verification activi- 

ties such as  those of the Planetary Quarantine Office or any Project Office. 

We see that these 

The case where Y = 1, 

In a later document the entire area of sampling 

24 
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TABLE I 

V. Prediction Model 

A prediction model is a model which extrapolates the bioburden forward (r , r  

backward) in time. 

prediction model to  be capable of being viewed as  a single entity. 

our estimation model. 

presses the probability of 1 microorganisms on our surface at some fixed time. 

we consider this probability a s  varying with time and assume that the distribution of 

the number of microorganisms per clump is constant in time, then the only parame- 

ter which can vary is the mean number of clumps on the surface. This is consistent 

with our previous assumption that the number of microorganisms on the surface at 

some time is dependent on the number of clumps on the surface at  that time. Using 

this we then see that the probability that 1 microorganisms are  on the surface of the 

zone at  any time t should have the form 

We would like, if  possible, for the estimation model and the 

Let us consider 

This model is given by Equation (7). This equation ex- 

If 

This provides heuristic motivation for the use of Equation (1) a s  a prediction model. 

In Appendix B we see that the model, derived from first principles, actually assumes 
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this form. 

is t o  discuss the determination of the function H(t). 

Al l  that remains t o  complete the development of our prediction model 

The function H(t) varies with time. Therefore, it is reasonable for us to first 

consider the rate of change of H(t). 

that new particles a re  deposited on the surface and other particles removed from 

the surface at various points in time. Obviously, if we a re  going t o  derive an ex- 

pression for the rate of change of the mean number of particles on a surface, we 

must consider the deposition rate and the removal rate. 

deposition rate of particles onto our surface. 

the number of particles on the surface at various instances in time a s  discussed 

earlier. The 

net change in number of particles on the surface therefore should be the difference 

of these two functions. Hence, we have 

The variation of H(t) in time is due to  the fact 

Therefore, let h(t)  be the 

The removal rate should depend on 

We let p(t)H(t) be .the removal rate of particles from our surface. 

Appendix B derives this equation in a precise way which shows its consistency with 

our model. 

Thus Equations (11) and (12) w i l l  serve a s  our prediction model. 

sider in the remainder of this section an application of this prediction model. 

Let us con- 

Let us suppose that we a r e  considering surfaces which a re  sterile at time 

t = 0. 

150 microorganisms per hour a r e  deposited on an agar-covered surface of the same 

size a s  our surface. Suppose that we kmw the death rate for the microorganisms 

in this environment is 15 percent of the population per hour and that 6 percent a r e  

removed by physical means. 

ing to a Poisson distribution with a mean of 2 microorganisms per clump. 

Assume those surfaces a re  inserted into a uniform environment such that 

Assume that the microorganisms a r e  clumped accord- 

In order to apply our model to this case we let 

h(t) = 150 
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in Equation (12). 

ber of organisms, M(t), by solving Equation (12). 

to calculate the variance of our predictions and thus establish confidence limits for 

various size samples. 

mean number of organisms, M(t), and the solid vertical lines a re  the 95-percent 

confidence limits for a sample size of 10 such samples. 

Using Y = 2 in Equation (8) we can obtain our predicted mean num- 

Equation (9) would then enable us 

Figure 2 illustrates this. Here the curve is the predicted 
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Figure 2. An Illustration of the Use of the Prediction Model 

V I e 1 nteraction Between Models 

The fact that our estimation model has the same form as our prediction model 

at any given point in time allows us to use these models together to obtain informa- 

tion regarding the parameters in each model. 

Let us proceed as we did in Section IV. Assume that we are  sampling at times 

t and that we obtain the sample means at these times. Let us denote m tl, t2,  * * m a 
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these by y(tl), . e e ,  and y(tm). By allowing for sampling e r ror  and the area of the 

zone we  can obtain x(tl), e e . ,  and F(t ) as in Equation (2). These a r e  then approxi- 

mations to the means of the distributions which describe our estimation model at 

time tl, t2, e t 
quantities converge to the mean of the distribution at each sample time. 

form of this distribution and the mean as well as the number of samples, we can 

then establish confidence limits on our estimates at each of these times (see Appen- 

dix C). 

- 
m 

In fact, as the number of square inches increases, these m" 
Given the 

Knowing the distribution, the mean, and the variance at each of a series of 

times, it would seem likely that we could then use this information to deduce the 

deposition rate, h(t), and the removal fraction, p(t), during the time when the sam- 

ples are taken. Indeed, using the techniques developed in Appendix C this can be 

done. Therefore, if the microbial environment around the surface in the future 

(beyond t 

burden into the future using the deposition and removal rates determined in the 

period t through t Again we can construct the confidence intervals about these 

predictions to give us some information regarding the accuracy of our predictions. 

Thus, it is possible to obtain our prediction using only some information about the 

number of microorganisms per particle in the environment and surface sampling 

data at previous times. 

tween t and t 1 m 
the deposition rate, the removal fraction, and the properties of the environment 

discussed in Section 11. 

future. 

) is the same (or similar) to that between t l  and t m m' we can predict the 

1 me 

If the environment in the future is not the same as that be- 

we can then use this model to determine the relationships between 

We can then use these relations to extrapolate into the 

The first of these possibilities is illustrated below. 

The examples we wish to discuss were chosen to illustrate the use of the pre- 

diction model and to demonstrate its feasibility. 

ered by United States Public Health Service at Cape Kennedy. 

1- by 2-inch stainless steel strips placed in hangar A 0  at the A i r  Force Eastern 

Test Range. 

planetary missions. 

gathered during the period from January 17, 1967, through March 30, 1967, from 

the location designated as "Tray 2. I' At each sampling period, six strips were 

processed according to the NASA Standard Procedures for the Microbiological 

The data we shall use were gath- 

It w a s  collected using 

The facility is a laminar downflow clean room which may be used for 

The particular data we shall use in this first example were 
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Examination of Space Hardware'' and the mean number of microbes per strip is 

recorded. These means a r e  shown in Figure 3. 
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Figure 3. Stainless Strip Data from Cape Kennedy 

For this example, let us assume that a microbial zone consists of a 1- by 2-  

inch stainless steel str ip in Hangar AO. 

assay of the entire zone. 

efficiency is one. 

approximation, 

Thus our sample would be 100-percent 

Since this is true, we shall assume that the sampling 

This is probably not exactly correct, but it should be a good 

We wi l l  restrict our consideration to the class of viable particles in the en- 

vironment. 

crobes per viable particle. l7 Let us take Y to be 4.0 and let the distribution de- 

scribing the number of microorganisms per particle be Poisson (or at least have 

equal mean and variance). 

Health Service17 and with the distribution used in References 2 3  and 25. 

This is helpful since data is available regarding the number of mi- 

This is consistent with the data presented by the Public 
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We w i l l  attempt to choose the deposition rate and removal fraction so  that the 

to the data. * The easiest value our model assumes at various times comes 

case for us to work with would be a uniform environment. 

microbial environment in hangar A 0  is uniform during the period of our samples. 

This means that h( t )  and p(t) a re  assumed to be constant. Figure 4 gives our re-  

sults with these assumptions using the data at  3, 4, and 5 weeks a s  our sampling 

periods and predicting out to 10 weeks. 

predictions a re  as  we add in additional sampling period data. The vertical marks 

give the 99-percent confidence intervals about the mean of our model for the mean 

of six samples. 

Let us suppose that the 

Figures 5 through 8 llustrate what our 
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Figure 4. Prediction Based on Three Samples 

.b -,* 
This is made precise in Appendix C. 
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Figure 8. Prediction Based on Seven Samples 

26 



There are several observations which a r e  in order. We see that the more 

data we have the better our predictions a re  at the tenth week of exposure. Sec- 

ondly, the values of A and p appear to  be converging to constant values, The value 

of the "goodness of f i t "  parameter represented by E appears t o  be getting smaller. 

This parameter is actually the variance between the measurements and our model. 

This would say the f i t  of the model t o  the data improved with additional points. 

We observed earlier that the environment is not truly constant. The data 

point at  t = 4 weeks appears to be inconsistent with this assumption. Let us elimi- 

nate that point and repeat the process again. Figures 9 through 1 2  repeat our pre- 

diction process beginning with the use of the data points at t = 3, 5, and 6 and add- 

ing one point at a time until we teach t = 9. 

improved. This would say that if we had data from a truly constant environment 

the model would predict a bioburden behavior very close t o  the behavior actually 

observed. 

We see that the predictions a re  much 

a 
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In order to illustrate the fact that the environment in A 0  is not constant, let 

us use the data gathered by the USPHS during the period from December 15, 1966, 

through February 2, 1967. We wi l l  use all 11 weeks of data and t ry  to characterize 

the environment. 

the ninth week, the data does not come from a constant environment. 

Figure 13 illustrates our attempt to do this. We see that after 

Figure 13. 

Nonconstant Envir on - 
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The models we have presented in this document allow one to study the biobur- 

den problem in more detail. 

so  that a s  more information becomes available it can be added to the existing struc- 

ture. 

It is intentionally a general approach to the problem 

The models also have many of the properties we had hoped to achieve. Among 

these are: 

1. A closed form description of the models. 

2 e Compatibility between the estimation and prediction models. 

3. A method for  varying the parameters in the model on the basis 
of surface samples. 

4. A way to assign a confidence interval about the predicted value. 

5. Clumping is taken into account and the distribution of the num- 
ber of microorganisms per clump can be specified, 

6. The model exhibits the plateau effect. 

7. A way to establish sampling protocol. 

There are, however, several studies which wi l l  be important in the Planetary 

Among the more Quarantine Program. 

important of these are: 

This model should facilitate these studies. 

1. A model needs to be developed which will  determine the deposi- 
tion rate and the removal fraction rate a s  functions of other 
physical parameters, 
procedure illustrated in Section VI, then data fitting techniques 
should help us attain this goal. This, of course, should lead to 
a more complete understanding of the problem. 

If we  determine these functions by the 

2, The entire problem of establishing sampling protocols needs 
further study. A s  pointed out in the example of Section IV, the 
estimation model can be used to establish the number of samples 
needed at any given sampling period. The other part of establish- 
ing a sampling protocol is the establishment of how often the sam- 
ples a re  to be taken. If we know an upper bound on the deposition 
rate and a lower bound on the removal fraction, we can use Equa- 
tions (8), (ll), and (12) to establish how often samples a re  to be 
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3. 

4. 

taken. This can be based on different criteria such as  the mean 
changing by a certain percentage, etc. 

We would also expect future studies to take into account other 
sampling e r ro r  distributions, rather than being limited to a 
uniform distribution. 

Sensitivity studies also need to  be performed. 
result in autocorrelation studies which could have some influence 
on Item 2. The sensitivity analysis could also lead to some sim- 
plification of the studies outlined in Item 1. 

These might also 

Controlled experiments where the parameters of the model can 
be measured independently a re  required for model validation. 
These are  currently under way. 2 6  

All  of these studies a re  within the reach of present-day methods and tech- 

niques. 

bioburden model f o r  Planetary Quarantine as  well as  for other applications. 

When they are  completed they should lead to a comprehensive and usable 
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Mathematical Derivation of the Basic Approach 

In this appendix we wish to derive a predictive bioburden model in a mathe- 

matical manner. 

Let us  assume that 

same microbial environment and that every point has the same removal and attrac- 

tion characteristics. 

craft as defined earlier. 

Let us assume that we a r e  considering a surface A of area A. 

has been chosen so that every point of .d is exposed to the 

Thus, the surface E! could be a microbial zone of a space- 

Since most microorganisms get on surfaces attached to particles (a naked 

organism will  be assumed to be attached to itself), it is appropriate for us to con- 

sider particles of a class $. This class may be chosen in any of several ways. It 

may be chosen by deposition o r  removal characteristics, by size, by clumping 

characteristics, by the fact that all particles of the class carry microorganisms 

o r  by any other characteristics which can be defined explicitly. 

Before proceeding we wi l l  need the following definitions: 

1. 

2. 

3. 

4. 

5. 

6. 

Let X(t) = a random variable representing the number of micro- 
organisms on surface Aat time t due to particles of class $. 

Let P. .(T~ t)  = Prob ( X(t) = jl  X(T) = i )  , 

Let Y = a random variable representing the number of micro- 
organisms per particle in class $. 

1J 

Let q = Prob ( Y  = j 5 e 

Let hm(t) h t 0 (h) = probability that the deposition of a parti- 
cle of class $ on surface xd occurs between t and t t h given 
that X(t) = m. 

Let p 
part ixe from class t,b takes place between t and t t h given that 
X(t) = me 

j 

(t) h t 0 (h) = probability that the removal from .d of a 
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These last two definitions require more explanation. The deposition of parti- 

will  include every mechanism by which microorganisms can cles of class $ onto 

get onto surfaces. 

Therefore, the te rm Xm(t )  h t 0 b) must represent the combined effects of 

all mechanisms. 

Thus, we shall assume X m ( t )  = h(t). 

Logically we would not expect hm(t) to actually depend on m. 

The term p (t) h t 0 b) represents the combined effects of all  removal m 
mechanisms. We would expect p 

clumps of microbes on xd due to particles in $. 

(t) to be directly proportional to the number of m 
Thus, we let 

p(t) nh t 0 b) = Probability that a removal from ed of'a 
particle from class $ takes place between 
t and t t h given that there a re  n clumps 
on Af due to J, at time t. 

Therefore, we have 

CO 

p (t) h t 0 b) = Prob { n particles of $ on zd at time t 

Prob (Particle is removed between 
t and t t h given n particles on A 1 

m n=O given X(t) = m t x  

00 

= c Prob ( n particles of $ on -d at time t 
~0 given x( t )  = rn f x  

(p(t) nh t 0 (h)) 

00 

= p(t) h c n Prob { n particles of $ on A! at 
time t given X(t) = m )  t 0 (h) n=O 

where 
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oe 

n Prob ( n  particles of I) on at time t given X(t) = m 1 

is the expected number of particles of J/ on at time t given X(t) = m. 

We are now prepared to derive the model. We shall assume that microor- 

ganisms due to particles of class I) are deposited on ed in clumps and that they a r e  

removed in clumps. We shall assume Y represents the number of microorganisms 

on particles in the environment as well as on A. 
restrictive i f  the number of clumps on 

that a change in the microbial load on xd takes place between t and t f h is given by 

This last assumption is not too 

Observe that the probability is large. 

and thus 

1 - P..(t, t f h) l im 
h+O h = (h(t) 3. p(t) Ej(t))(l - qo) . 

Similarly we have 

Let us assume that the passage to the limit in this equation is uniform. 

The Chapman-Kilomogorov equation can be stated as 2 7  

P. (7, t t h) = P..(T, t )  P (t, t t h) e 

lk jk 

cA4 1 

Combining this with Equations (A41 and (A51 and the definition of derivative we 

obtain 
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k- 1 

This would correspond to the Kilomogorov Foreward Equations. 27 This combined 

with a knowledge of initial conditions form our model. 

the form 

The initial conditions take 

l i f j = i  
P. ,(T, t)  = 

13 0 elsewhere 

Our interest, then, is in obtaining solutions to Equations 027) with initial conditions, 

Equation 028). These functions P. (7, t )  would represent the form of the probability 

distribution of the number of organisms on the surface zf. 
ik 
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Solutions, Pij(7, t), and Their Properties 

Equations (A71 and (A81 of the previous appendix represent our basic model. 

The first question we should ask about this model concerns the existence of a solu- 

tion to these equations. Feller 28’ 2 9  has considered this problem for this type of 

equation. If our deposition and removal rates are  bounded, then his results apply 

and we can conclude that there exists a unique solution to Equations (A71 and (A8). 

The next question we should ask concerns the form of the solution to Equations 

If we assume that the maximum number of microorganisms on& due (A71 and (A8) .  

to  J, is limited to some maximum, then the classical theory of ordinary differential 

equation allows us to write down the solution in closed form. 30 This form of the 

solution is not very practical since it requires the computation of the eigenvalues to 

certain matrices. 

matrices a r e  very large and, therefore, the computation of the eigenvalues is very 

difficult and impractical. 

Since the maximum must be chosen as a large number, these 

The method we shall use to derive the form of the solution to Equations (A?) 

and (A8) does not require us to choose a maximum. 

variable representing the number of particles of class $ on r$ at time t. 

Define Z(t) to be a random 

Let 

f(n, t)  = Prob { Z(t) = n a 

Since X(t) represents number of microorganisms on 

from class $, we know that 

at time t due to particles 

where Y 

Then we know that under the assumptions we have made 

j = 1, 2,. . . a r e  random variables which have the same distribution as Y. 
j’ 31 
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00 

P..(T, t )  = Prob { Z(t) = Q 1 Prob { Q particles contain j 
1J Q = O  microorganisms ) 

where 

Q(j,Q) = Prob {I particles contain j microorganisms! . 
We a re  now prepared to consider each of the te rms  in Equation (B2) indi- 

vidually, If we let 

O i f k #  1 

' k = [  l i f k = l ,  

o r  if we reasoned again physically from first principles, then Equation (Ai') would 

represent the number of particles in ICI on A. These equations become 

t (n t 1) 1-1 (t) f (n t 1, t), n 2 1 . 

We recognize these as the ordinary equations for a "Birth and Death" process. 

These could be derived in the same manner as we did Equation (A7). The initial 

conditions for this set of differential equations can be determined from Equation 

(A8). 

explicitly exhibited in Equations (B2) o r  (B3). 

use in bioburden models in Reference 32. 

bution. Let 

Observe that they must depend on i and T even though this relationship is not 

These were originally proposed for 

It is easy to find the mean of this distri- 

00 

Q = O  
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Then in a straightforward manner we obtain 

We are  now prepared to state our first main result of the analysis of Equation (A7). 

Theorem 1: If H(0) = 0 then 

Proof: This can be seen by a simple substitution of Equation (B5) 

into Equation (B4). 

Therefore, if we consider only the case where H(0) = 0, we would have i = 0 

at 7- = 0. 

tribution. 

This would imply that Equation (B2) represents a compound Poisson dis- 
22 

In analyzing Q ( j , l )  we must make use of the fact that 

and therefore since Prob { Ym = p 1 = q we have 
P 

where the summation 

m . . ., m.) which satisfy the relations 

means over all sets of nonnegative integers (m rn 0’ 1’ (1 ) 
2’ J 

m t m t m2 t ..* t m.  =,Q 
0 1 J 
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We a r e  now prepared to prove: 

Theorem 2: Equation (B2) is a solution to Equation (A7). 

Proof: Considering Equation (A3) we see that in order to find E.(t) 

we must know the probability of having 1 particles given that 

there a r e  m microbes at time t. Using the Bayes relation 31 

w e  have 

3 

Prob 1 n particles in $ on zd at time t given X(t) = j 1 
= Prob IZ(t) = n 1 X (t) = j l  

Prob I j microbes given n particles 1 I Prob In particles at time t 
- 

00 

Prob 11 particles at time t )  Prob 1 j microbes given 1 particles 

1=0 

Thus, using the notation of this section, we have 

Rewriting this we have 

We shall need the results of two lemmas in order to complete the proof of 

this theorem. 

Lemma 1: 
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Proof: This follows immediately from our definttions since Q(j, I )  is 

the probability that the first 1 particles chosen have j micro- 

organisms attached while q represents the probability that 

the I t 1st particle has k - j microorganisms. 

all possible ways of dividing the particles between the first I 

particles and the I t 1st particle we obtain Equation (B9). 

k- j 
If we sum over 

Lemma 2: 

Q(j, n) = 2 Q(m + j, n-b 1) Q (m, 1) . 
m= 0 

Proof: This again is an immediate consequence of our definitions. 

The proof of our theorem is then completed by substituting Equation (B2) into 

Equation @7) and making use of Lemmas 1 and 2 and Equation (B8). 

The two things we shall need to know for our application of this model a r e  

the mean and the variance. Define 

Again in order to simplify notation we omit the dependence of M(t) on i and T. We 

then have the following theorem. 

Theorem 3: If P. .(T, t )  is given by Equation (B2) then 
13 

where 

m 

Y =  jq .  = mean number of microbes per particle. 
j = O  J 
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Proof: Let us consider the generating function for P.. (7, t )  which 

is given by 
13 

M 

Making use of Equation (B2) w e  have 

If w e  let 

1 then the generating function for Q(j, I) is given by [g(z)] . Therefore 

Let G (z, t )  be the generating function for the probability distribution f (I, t). 

Equation (B14) implies that 
Then Z 

Generating functions have the property that 
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Using this together with the fact that q .  = 1 we have 
j= 0 J 

Q = O  

m 

But Y =  g ' ( l ) a n d H ( t ) =  Q f  (a, t )  so that we have our desired result. 
Q =Y 

We can obtain an expression for the variance in the same manner. Let 

and 

Using the definition of variance we see that V (t) must satisfy the equation 

= 2 X ( t ) H ( t ) t  h ( t ) -2p ( t )  [ v ( t ) + H  (t) +p( t )H( t )  . 0316) [V (t) + H2 (t)] ' 2 l  
Theorem 4: If P. .(T, t )  is given by Equation (B2) we have 

1J 

In particular if  i = 0 when T = 0 then 
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Proof: We know that 

A simple substitution of Equation (B15) into this expression yields Equation (B17). 

Equation (B18) follows from Equation (B5). 

At this point, let us stop to verify the "plateau" phenomena and to make some 

remarks regarding the entire spacecraft. 

If there a r e  enough particles of + on X d  such that the distribdion of the num- 

ber of microorganisms per particle in + is the same on zd as it is in the environ- 

ment then the stochastic process with which we are  working is a Markov process. 

From physical grounds we also know that it is irreducible if we limit our considera- 

tion to only a finite number of microorganisms on the surface. 33 If the environment 

in which we are  working leads to a process which is homogeneous then 

and T. is independent of i and 7. 

which could be given to the plateau phenomena. 

This is one possible mathematical interpretation 
3 

Another way to consider the "plateau" effect is to only consider it as implying 

the existance of a bound on the mean of the distribution. 34 Observe that Equation 

(B4) implies'that if  M (0) = 0 then 

and that 0 < p If we  know that 0 I h(t)  _< hmax 

Equation (B19) that 

< p (t) 5 1, then we  have from min - 
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Thus would then imply 

Amax 

'min 
M (t) 5 - Y .  

Let us  again assume M (0 )  = 0. If we wish to find the probability distribution 

for the entire spacecraft, it can be obtained from the probability distribution for 

each zone. 

distribution, we may, therefore, conclude that the distribution for the entire space- 

craft is a compound Poisson distribution and that the mean is obtained by summing 

the means for the various subsections. 

Since our probability distribution at any time t is a compound Poisson 
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The Model and Its II mplementation 

If we assume that H (0) = 0 (i. e., the number of particles of $ on c$ at time 

zero is known to be zero) then combining Equations (B2) and (B5) we have 

where H (t) is determined by Equation (B4) with the initial condition H (0) = 0. 

Equation (C1) would then represent the estimation and prediction model as  it 

was presented early in this report [Equation (l)]. It is interesting to observe that 

if the distribution of the number of microorganisms per particle (or clump) in 9 is 

Poisson then Equation (C1) represents a Neyman distribution of Type A. 

tribution was the estimation model used to determine the sampling requirements 

for Apollo. 23  Lf this distribution is not Poisson then the estimation model which is 

compatible with this prediction model is a generalization of that used in Reference 

23. As  an estimation model, the use of Equation (C1) seems clear when H (t) is 

replaced by M ( t ) / Y .  

of this section. 

microorganisms per particle in $ is known and that we know Y and v. 

This dis- 

Its use a s  a prediction model is the subject of the remainder 

Let us assume that the form of the distribution of the number of 

If w e  know h(t) and p (t), then, after using Equation (B4) to get H (t), we can 

calculate the variance and mean of the distribution Equation (Cl)  by using Equations 

(B12) and (B18). 

p (t). 
taken from 

the most direct approach to the estimation of bioburdens and since the state of the 

ar t  is not fa r  enough advanced to relate environmental contamination to surface 

contamination, we shall in this section discuss how values for h (t) and p (t) can be 

obtained from surface samples. 

The problem ar ises  that we, in most cases, do not know X ( t )  and 

Our problem is to obtain values for h( t )  and p (t) from samples which a re  

or  from the environment surrounding A. Since surface samples a re  

The technique might also give us a way of learning 

53 



more about the relationships which exist between surface contamination and envi- 

ronmental contamination. We shall discuss this more fully later in the section. 

Let us assume that we sample surface -8 for microorganisms associated 

and we wish to extrapolate to 

Suppose that at time tk, k = 1, * .  e ,  m we take % samples of a! 

< tn? with particles in I,!J at time tl < t2 < t3 < . # .  

some time t 

square inches each with a uniform sampling efficiency E 

uniform sampling e r ro r  is realistic because of our definition o f d .  

quired A t o  be uniform in most characteristics which would cause the distribution 

of the sampling e r ror  to take another form. Let x.(t 1 be the number of microor- 

ganisms found on due to class I,!J in the ith sample at time t Since the area of 

ei? is A square inches, then the expression 

f '  
This assumption of a k" 

We have re -  

i k  

k' 

provides us with an unbiased consistent estimator to the mean M (t) of the distribu- 

tion Equation (Cl) at time tk. Thus, we know that x(t ) is an approximation to 

M (tkIe 
k 

From Equations (B4) and (B12) we know that 

where Y is assumed known. 

Let us assume that we know that h( t )  and p (t) lie in a certain class of func- 

tions which can be spanned using a finite number of real  variables; that is, let us 

assume 
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and 

This implies that as we find p,, p2, . e * ,  p,, al, . . e ,  and CY then we can com- 

pletely describe h(t) and y (t). 
be based on our physical knowledge of what deposition and removal a re  like. 

x( t  ) approximates M (tk), we know that 

P 

I-1 
The class functions CA and C which we choose wi l l  

Since 
- 

k 

where M (t ) is determined by Equation (C2) and e (tk) is a random variable repre- 

senting the e r ror  between the model and the observation. 
k 

Consider the quantity 

If we know the true h ( t )  and p (t) lie in CA and C respectively then the Gauss- 

Markoff Theorem tells us that the h( t )  E C, and y (t) E C which minimize R are  the 

best unbiased estimates to h ( t )  and y (t). 35 This implies that i f  A ( t )  is determined 

by P , ,  i = 1,2, . . . , r and p (t) is determined by a,’ i = 1 ,2 ,  . , , p then 

Expected value ( p i )  = true pi, i = 1,2,  e a e ,  r 

A E”A 

IJ 

A A A 

A 

and 

( G i )  = true a Expected value i = 1,2, . .., p e i’ 

Also, if we let 

A A A  
R = R ( h , p )  
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then the expected value of e (t is zero for k = 1,2,  . . . , m and k 

A 

= Var ( e  (tk)) R E = Expected value - - . 
Thus, the quantity - - is a measure of how well the model fits the data. 

The problem remaining is to decide how to choose h (t) and ,u (t) for the period 
A A 

from t 

of particles in + from .d during the period t l  5 t _< tm. If we know, or  are  willing 

to assume that the environment r$ sees in (tm, tf] is the same as it sees in T 

< t s tf. It is clear that h(t) and ,u (t) represent the deposition and removal m 

- - [ l,T2] 
then we can use A(@ t f 77) and ,u (et  f q )  as the deposition and removal 

rates where 

T2 - T1 
tf - t 0 =  

m 

and 

This w i l l  be very useful when various environmental parameters agree in a qualita- 

tive way. 

The other, and more desirable way, of determining h(t) and 1.1 (t) for  use in 
A A 

the time period t is by realizing that X ( t )  and ,u (t) should be capable of deter- 

mination as  functions of various environmental measurements taken during t 5 t 5 

tm' 
ing Equation (C2). 
measurement and then use these functions to extrapolate to the environment which d 

( m*tf] 

1 
A A 

Using data fitting techniques A ( t )  and ,u (t) have been determined from minimiz- 

We can then determine what function they a r e  of the environmental 

wi l l  see  during the period tm < t 5 tfe This wi l l  be the subject of a future report. 
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